
Handling Scientific
Experiments with HPC
Clusters and Slurm
Antonio Emanuele Cinà
Assistant Professor @ University of Genoa, Italy
January 15, 2024

Seminar for the course “Deep Learning and Computer Vision with PyTorch”, University of Cagliari

Contents of this seminar

The Usenix Shell What is the Shell? Basic Commands

Reproducible Python Environments Creating reproducible environments with Conda

Working on HPC Clusters using SLURM What is Slurm? HPC Introduction and Slurm Scheduler

Practical Insights How can I put everything into practice?

The teaching material have been taken from:

Shell - Stanford CS Course | Conda Tutorials| HPC with Slurm - University of Cambridge

https://web.stanford.edu/class/cs45/lectures/2-shell-tools.notes.pdf
https://bit.ly/3A1uf1Q
https://docs.anaconda.com/free/navigator/tutorials/index.html
https://cambiotraining.github.io/hpc-intro/

Antonio Emanuele Cinà | Assistant Professor @ University of Genoa

The Usenix
Shell

The Shell
The shell is a program, alternative to the classical GUI, where users can type commands.

Using the shell will take some effort and some time to learn. You must learn a few commands.

Conversely, a GUI presents you with choices to select, automatically hiding commands.

The grammar of a shell allows you to combine existing tools into powerful pipelines and handle
large volumes of data automatically.

Shell vs GUI
With a GUI, we give instructions by clicking a mouse and using menu-driven interactions.

While the visual aid of a GUI makes it intuitive to learn, this way of delivering instructions to a
computer scales very poorly.

Imagine the following task: for a literature search, you have to copy the third line of one
thousand text files in one thousand different directories and paste it into a single file.

Using a GUI, you would not only be clicking at your desk for several hours, but you could
potentially also commit an error in the process of completing this repetitive task.

The shell allows such repetitive tasks to be done automatically and fast.

The Shell
Windows has two different CLIs installed by default, the Command Line Prompt (CMD) and Windows
Powershell. Both are fine, but the power shell gives more of an shell feeling.

MacOs has by default Bash (MacOs Catalina has Zsh) accessible by using the Terminal application.

Linux users are probably already familiar with a shell. Which shell and terminal application is installed,
depends on the installed distribution.

Shell for Scientific Experiments
The command line is often the easiest way to interact with remote machines.

Familiarity with the shell is near essential to run a variety of specialized tools and resources
including high-performance computing systems.

As clusters and cloud computing systems become more popular for scientific experiments,
being able to interact with the shell is becoming a necessary skill.

Local device Connection via Shell and SSH Remote servers

Meet the Unix Shell

The shell began with the UNIX OS in 1969.

Open the Terminal application; on macOS it’s
located in the Utilities folder of Applications, on
Windows it’s in your start menu (it might be
called Ubuntu), and on Linux it’ll be in your
desktop environment’s normal app launcher.

Bash is a Unix shell and command language that is
the default login shell for most Linux and MacOS.

Interpreted, not compiled.

Meet the Unix Shell

The shell is a text-based interface that takes
commands instead of clicks

Commands are pre-existing programs:
 <command name> <options> <input || output>

To know about an individual command use man:
 <command name> man

Short for manual page, or we can also use the
--help option

Meet the Unix Shell

Meet the Unix Shell

Meet the Unix Shell

Meet the Unix Shell

$PATH
An environment variable is a dynamic-named value that can affect the behavior of running processes.

It is part of the environment in which a process runs. The $PATH variable is a notable example,
commonly used in Unix-like operating systems.

In this example, $PATH is a colon-separated list of directories.

Users can customize the $PATH variable to include directories where their own executable files are
located, ensuring easy access to their custom commands.

Running Programs
We can run a program by typing its path into the terminal.

When a command is entered in the shell, the system looks for the corresponding executable in these
directories in the order specified. If a matching executable is found, it is executed.

To run a program in the current directory you need to give the path
- $./local_program

Some folders are globally visible, so you only need the program’s name.
- /bin/ is globally visible because it is in the PATH shell variable
- This allows users to run commands without specifying the full path to the executable, making

command execution more convenient and flexible.

All commands are bash script that are executed when you hit enter on a terminal line.

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

Total number of files

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

Files permissions

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

File owner and File group

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

File size

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

Last modification date

Files
Files are collections of data that are stored on a storage device for long-term storage. They can
contain various types of information, such as text, images, audio, or program code.

Files can be listed with the command $ ls -al

File name

Files Permissions
The first set of permissions applies to the owner of the file.
The second set of permissions applies to the user group that owns the file.
The third set of permissions is generally referred to as others.

Each character in the expression indicates whether a specific permission is granted or not.
- read (r) permission
- write (w) permission
- execute permission (x)

Files
Files contain other files, branching out from the root “/” forming a tree-like hierarchy.

Files are located with a path of folders separated by “/” this is called the file path.

Paths starting with “/” are called absolute paths
- Start searching from the root of the file system

Paths that do NOT start with “/” are called relative paths
- Starts searching from current directory

The $ pwd command will print the current directory

Useful Commands
Command Operation Example
ls See folder contents ls -l
cd <folderName> Move into given folder cd Downloads

cp <source> <destination> Make a copy of given file in given
destination cp file.txt myDir/

mv <oldName> <newname> Rename or move given existing file to given
name/destination mv fil.txt file.txt

cat <fileName> Print file contents to terminal window cat file.txt
touch <filename> Create empty file with given name touch file.txt

echo <string> Print given string to terminal window echo “hello world”

pwd Print working directory pwd

mkdir <directoryName> Create an empty directory at location
specified mkdir ~/newDir

exit Exit the shell exit

Useful Commands for Remote Working
Command Operation Example

wget <path_to_remote_file> Downloads files from the web. wget
https://example.com/file.tar.gz

ssh <username>@<remote> Establishes a secure shell connection
to a remote server. ssh acina@gpu1.unige

scp <localfile>
<username>@<remote>:/<path>

Securely copies files between a local
and a remote host.

scp main.py
acina@gpu1.unige:/acina/project

tar
Compress: tar -czvf
<archive.tar.gz> <files>

Extract: tar -xzvf <archive.tar.gz

Compresses or extracts files in a
tarball archive

tar -czvf archive.tar.gz file1

tar -xzvf archive.tar.gz

zip <archive_name.zip> <files> Compresses files into a zip archive zip results.zip exp1.csv exp2.csv

unzip <archive_name.zip> Extracts files from a zip archive. unzip results.zip

Bash Scripting
Bash is a command language and scripting shell integral to Unix-like operating systems.

Why we want to use it?

Bash Scripting
Bash is a command language and scripting shell integral to Unix-like operating systems.

Bash Scripting
Bash is a command language and scripting shell integral to Unix-like operating systems.

Why we want to use it?

Automation of Repetitive Tasks
Bash scripts automate routine and repetitive tasks, reducing the manual effort required for activities
such as file management, data processing, or system maintenance.

The ability to automate these tasks not only saves time but also minimizes the risk of human error,
ensuring consistent and reliable execution.

Bash Scripting

Bash Scripting
Bash is a command language and scripting shell integral to Unix-like operating systems.

Why we want to use it?

Efficient Command-Line Operations
Bash scripts provide a means to encapsulate and execute complex command-line operations with a
single script, simplifying intricate processes.

Users can create custom scripts to encapsulate sequences of commands, making it easier to handle
and manage a series of operations without the need to remember or type them individually.

Bash Scripting

Bash Scripting
Bash is a command language and scripting shell integral to Unix-like operating systems.

Why we want to use it?

Task Scheduling and System Automation
Bash scripting facilitates the scheduling of tasks through cron jobs or other scheduling mechanisms,
enabling the automatic execution of scripts at predefined intervals.

System administrators often leverage Bash scripts to automate system-related tasks, ensuring timely
execution of maintenance routines and updates.

Variables and Control Flow

This script assigns a value to a variable and uses a conditional statement to print a message based on
the variable's value.

Looping Over All Files

This script uses a for loop to iterate through all files in a specified directory, checking if each item is a
regular file before processing.

SSH Connection and Upload All Files

In this script, scp securely copies the local files to a remote server using SSH.

SSH Connection and Download All Files

In this script, scp securely download the remote files to the local machine using SSH.

Exercise 1: Generating 100 Empty CSVs
Problem description: Create a Bash script to generate 100 empty CSV files named "file_i," where "i"

represents the index of the file.

The script should:

- Check if a directory named "csv_files" exists. If not, create it.

- Generate 100 empty CSV files within the "csv_files" directory, naming them "file_1.csv" to

"file_100.csv."

Exercise 1: Generating 100 Empty CSVs
The touch command rename or move given
existing file to given name/destination.

Exercise 2: Move CSV Files
Problem description: Write a Bash script that moves all CSV files from one directory to another.

The script should:

- Check if the source directory "csv_files" exists. If not, display an error message and exit.

- Check if the destination directory "backup_csv" exists. If not, create it.

- Move all CSV files from "csv_files" to "backup_csv."

- Display a message indicating the number of files moved.

Exercise 2: Move CSV Files
The -d flag tests whether the provided name
exists and is a directory.

The mv command creates an empty file.

Antonio Emanuele Cinà | Assistant Professor @ University of Genoa

Reproducible Python
Environments

Managing Software
Python can very rapidly translate your ideas into readable code solutions.

● Write the data to an hdf5 file format? Import h5py!

● Plot some figure, xkcd style? Import matplotlib!

● Need Machine Learning? Keras, Pytorch, ScikitLearn!

Unfortunately, the packages are updated, restructured, improved, or just rewritten, just because the
authors came up with a better way to solve their problem.

These changes can be breaking changes for the code you have written.

Managing Software
“ Popular packages, such as Numpy, Matplotlib, or Pytorch are very reliable! ”

Managing Software
“ Popular packages, such as Numpy, Matplotlib, or Pytorch are very reliable! ”

However, using packages that are not as popular, breaking changing can happen more often, especially
when upgrading the package or Python itself.

Pytorch Inconsistencies

Taken from Pytorch official release notes: https://github.com/pytorch/pytorch/releases

Gradients from Pytorch 2.0 are set to None instead of zeros by default in torch.optim.*.zero_grad()
and torch.nn.Module.zero_grad()

PyTorch 1.13 PyTorch 2.0

https://github.com/pytorch/pytorch/releases

Pytorch Inconsistencies
“

In other words, the set_to_none kwarg is now True by default instead of False.
Setting grads to None reduces peak memory usage and increases performance. This will break code

that directly accesses data or does computation on the grads after calling zero_grad() as they will now
be None. To revert to the old behavior, pass in zero_grad(set_to_none=False).

”
 – Official Version Note

PyTorch 1.13 PyTorch 2.0

Backend Incompatible Changes

The migration of the PyTorch codebase from the C++14 to the C++17 standard implies several changes
in the code and build process. While this migration brings new features and improvements to the
codebase, it can potentially introduce compatibility issues and errors, especially when interacting with
other dependencies or projects that may not fully support C++17.

Managing Software
Managing software tools involve maintaining an organized environment for software dependencies,
which is important for ensuring the repeatability, and reproducibility of our experiments.

Documenting the exact versions of software packages and dependencies used in an experiment
enables researchers to reproduce results consistently, or to avoid incompatibilities and pitfalls .

Solutions:

Python venv: https://docs.python.org/3/library/venv.html
pip: https://pypi.org/project/pip/
Pipenv: https://pipenv.pypa.io/en/latest/
Poetry: https://python-poetry.org/

pip Pipenv Poetry venv conda

https://docs.python.org/3/library/venv.html
https://pypi.org/project/pip/
https://pipenv.pypa.io/en/latest/
https://python-poetry.org/

Conda is an open-source package management and environment management system that runs on
Windows, macOS, and Linux.

It works across multiple programming languages, especially for Python.

It simplifies the process of package installation and ensures reproducibility by capturing dependencies
and their versions.

Conda - Miniconda - Anaconda
Conda is a package and environment management system
that works across multiple programming languages.

Miniconda is a minimalistic distribution that includes only
Conda, its dependencies, and a minimal Python interpreter.

Anaconda is a full distribution that includes Conda, along
with a comprehensive collection of pre-installed packages
for data science, machine learning, and scientific
computing. It aims to provide an all-in-one solution for
users in these domains.

Conda environments
Conda enables users to create isolated environments with specific package versions, making it easier
to ensure reproducibility in data scientific computing.

It is good practice to have a unique environment for each project. For example, you may have one
environment with PyTorch 1.7 and its dependencies, and another environment with PyTorch 2.0.

This ensures that dependencies of one project will not create breaking changes for another.

Effective software management tools facilitate collaboration among researchers. Make the projects
self-contained and reproducible by capturing all package dependencies in a single requirements file.

Conda environments

Computer System

> python 3.7
> pandas 2.0
> Matplotlib 3.5

ENV 1 ENV 2 ENV 3

Conda installation

Conda installation
1. Download the latest version from miniconda

$ wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Conda installation
2. Install the miniconda distribution by running the bash script

$ bash Miniconda3-latest-Linux-x86_64.sh

Conda installation
3. Check conda has been correctly installed

$ conda –version

$ conda info

Creating a new environment
$ conda create -n new-env

The base command is conda create, and the flag -n specify the name new environment (“new-env”).

Creating a new environment
$ conda activate new-env

Now we can see our prompt has changed to include new-env at the front.

Creating a new environment
$ conda env list

Will print out all of the available conda environments.

Creating a new environment
$ conda deactivate

Deactivate the current environment and returns to the base.

Creating a new environment
$ conda env remove -n new-env

Once deactivated, we can also remove an environment.

Creating a new environment
$ conda create -n hse-hpc pytorch==2.1.1 torchvision==0.16.1 cpuonly -c pytorch

Create a new environment with name hse-hpc.

The -c flag defines the channel.

The == specification defines the package version to install.

Creating a new environment

Channels

Creating a new environment

Env location and requirements

Creating a new environment

Installed packages and dependencies

Export environment
$ conda env export > env.yml

Export the active environment to a new yml file.

$ conda env create -f env.yml

Create a new environment from a yml file.

The -f flag serves to specify the file describing env dependencies.

Personal tips: Export environment
$ conda env export --no-build | grep -v "^prefix: " > env.yml

–no-build removes the build information, which sometimes
creates conflicts.

The grep -v "^prefix: " filters out the last row, describing the

environment path. This is not useful for other developers!

Personal tips: LIBMAMBA Solver
mamba is a replacement for the conda solver that works to improve certain aspects of the conda
infrastructure.

It is able to perform much faster installations (helping loads with 'environment resolution' steps).

We install mamba with conda:

$ conda install -n base conda-libmamba-solver

You can always use $ --solver=classic when creating the environment to re-enable the classic
solver temporarily for specific operations.

Antonio Emanuele Cinà | Assistant Professor @ University of Genoa

High Performance
Computing

Underlying Problem
Research problems involve extensive computations
that surpass the capabilities of laptop computers.

Insufficient memory, limited CPU cores, and
inadequate disk space can hinder the execution of
complex tasks.

Resource constraints become evident when
computations require parallel processing, or GPUs
acceleration.

Underlying Problem
Continuous and resource-intensive computations may lead to higher energy consumption, impacting the
overall operational costs associated with experimentation.

Intensive computations pose a considerable risk of damaging computer hardware.

Local setups are susceptible to voltage drops, introducing the risk of data loss and system instability. Unstable
power conditions can result in unexpected shutdowns, causing data corruption or loss, and potential damage
to hardware components.

High Performance Computing
High Performance Computing most generally refers to the practice of aggregating computing power in a way
that delivers much higher performance than one could get out of a typical desktop computer or workstation.

A HPC cluster is a large computer composed of a collection of many separate servers which are called nodes.

There may be different types of nodes for different types of tasks.
For example,

- Node 1, 2 equipped with 2 x NVIDIA A100 each;
- Node 3, 4 equipped with 8 x NVIDIA Quadro RTX 8000;

Nodes are typically connected to one another with a fast interconnect.

High Performance Computing

Login
nodes

Queue manager /
 Job Scheduler

Production/Compute
nodes

Shared Filesystem

ssh

High Performance Computing

Queue manager / Job Scheduler
An HPC system might have thousands of nodes and thousands of users. How do we decide who gets what and
when? How do we ensure that a task is run with the resources it needs?

Antonio Emanuele Cinà | Assistant Professor @ University of Genoa

Slurm

Slurm

Slurm
Slurm, short for "Simple Linux Utility for Resource Management," is an open-source job scheduler and
resource management system.

Slurm can start multiple jobs on a single node, or a single job on multiple nodes.

Slurm coordinates and optimizes the allocation of resources such as CPUs, GPUs, and memory to users' jobs.

It ensures fair usage, prevents resource conflicts, and optimizes the utilization of available computing power.

Slurm technicalities
slurmd is the Slurm daemon responsible for managing
and executing tasks on the compute nodes.

The daemon monitors the resource utilization on its
assigned node, ensuring that jobs are allocated
resources within the specified limits

slurmctld is the Slurm controller that is responsible for
job scheduling and allocation.

It decides how to distribute jobs across the compute
nodes based on the specified policies, resource
availability, and job priorities.

 Slurm +

Conda within the HPC cluster ensures consistent
environments across all compute nodes.

Multiple users may have different software
requirements, Conda makes it easy to set up and share
environments with the necessary dependencies.

Test and debug locally, experiment on the cluster!!

ss
h

slurmctld

Slurm: The UniVE cluster experience
We will delve into the practical aspects of utilizing Slurm on the UniVE workstations.

The UniVE cluster boast:

○ 2 NVIDIA GTX 8000 GPUs with 48GB of memory each, suitable for memory-intensive
workloads.

○ 6 NVIDIA GTX 5000 GPUs, each with 16GB of memory, provide a robust solution for various
GPU-accelerated computations.

Slurm: The UniVE cluster experience

List of available commands on slurm.

Tutorial at
https://support.ceci-hpc.be/doc/_contents/Quic
kStart/SubmittingJobs/SlurmTutorial.html

Slurm command:
https://docs.rc.fas.harvard.edu/kb/convenie
nt-slurm-commands/

https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html
https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html
https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/
https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/

Visualize hardware usage

Before launching any calculation task, it is
advisable to check the state of the hardware
to ensure correct and efficient operations.

$ htop is a powerful command-line utility
that provides an interactive and real-time
overview of system processes, memories
utilization, and CPUs status.

Visualize hardware usage

$ nvidia-smi is a command-line tool
provided by NVIDIA for monitoring and
managing GPU devices.

$ watch nvidia-smi provides detailed
real-time information on GPU utilization,
memory usage, temperature, and processes
using the GPUs.

Visualize hardware usage

The first block shows the GPUs status, i.e.:

- their name;
- temperature;
- energy consumption;
- memory usage;
- percentage of utility.

Visualize hardware usage

The second block shows:

- the GPU id;
- processor identifier using the GPU;
- the type of processes such as “C”

(Compute), “G” (Graphics), and “C+G”
(Compute and Graphics context).

- process name;
- GPU memory usage;

Running experiments with Slurm
Slurm batch script defines the job parameters, resource requirements, and the commands to be executed.

SBATCH Directives specify various job parameters:

--job-name: A user-defined name for the job.

--partition: The queue or partition on which the job should run.

--gres: The type and quantity of resources (GPUs in this case).

--nodes: The number of nodes requested.

--cpus-per-task: The number of CPU cores requested per task.

--mem: The memory allocated per node.

--time: The maximum runtime for the job.

--output and --error: File paths for standard output and standard error.

Running experiments with Slurm

run_example.slurm

Running experiments with Slurm

Slurm directives for
GPU, CPU and memory
allocation.

Running experiments with Slurm

Load module for
running on conda
environment.

Running experiments with Slurm

Set working directory.
Not always necessary.

Running experiments with Slurm

Running python
command as usual.

Tip: run with -u flag.

Running experiments with Slurm
The sbatch command is used in Slurm to submit batch scripts for execution.

Syntax: $ sbatch example.slurm

To monitor running jobs in Slurm, we can use the squeue command.
This command provides information about jobs currently in the queue, including their status, job ID, name,
partition, and more.

Syntax: $ watch squeue

Useful Commands for Remote Working

Command Operation

sbatch
Submits a batch script to SLURM. The batch script may be given to sbatch through a file
name on the command line, or if no filename is specified, sbatch will read in a script from
standard input.

squeue Used to view job and job step information for jobs managed by SLURM.

scancel Used to signal or cancel jobs, job arrays or job steps.

sinfo Used to view partition and node information for a system running SLURM.

MNIST training example
Create conda environment with pytorch dependencies.
$ conda create -n mnist pytorch==2.1.2 torchvision==0.16.2 cudatoolkit -c pytorch

Create the slurm file, use a template or use the Slurm builder.

Insert the python execution command: python train.py --batch_size 128 --epochs 20 --device cuda

The sbatch command is used in Slurm to submit batch scripts for execution. $ sbatch run_mnist.slurm

Monitor jobs currently in the queue:
$ watch squeue --format="%.18i %.9P %.30j %.8u %.8T %.10M %.9l %.6D %R"

Monitor log with $ tail -f log_filename

Cancel jobs currently in the queue:
$ scancel job_id or $ scancel -u username

https://hpc.nmsu.edu/home/tools/slurm-script-generator/

Use the HPC …
Ethically

○ Do not use the login node for production runs.

Smartly
○ Optimise your jobs for CPU, GPUs, Memory, and time usage;
○ Create universal and software-specific submission scripts (but never sample specific);
○ Reduce the number of CPU cores or GPUs if it doesn’t have a very significant effect to go in

production earlier;
○ Check production node usage;

Efficiently
○ Run multiple samples in parallel;
○ Build up dependency managers;
○ Test locally … run in production :-)

@cinofix

Contact

98

Antonio Emanuele Cinà
Assistant Professor @ University of Genoa

antonio.cina@unige.it

If you have any questions, don’t hesitate
to contact me.

https://twitter.com/cinofix
https://twitter.com/cinofix

